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Colloid transport in nonuniform temperature

E. Bringuier and A. Bourdon
UMR 7603 CNRS, Universite´ Pierre et Marie Curie, case 86, 4 place Jussieu, 75252 Paris Cedex 05, France

~Received 30 September 2002; published 29 January 2003!

The aim of this paper is to set up a theoretical framework for obtaining the thermodiffusion~or Soret!
coefficient of a colloid in a carrier liquid. It is first argued that the expression of the particle-current density in
nonuniform temperature cannot be derived from a theoretical formula valid for an isothermal solution. Then
the kinetic theory of Brownian motion is used to derive an expression for the current density properly account-
ing for thermodiffusion. The cases of free and interacting particles are treated, and the thermodiffusion current
pertinent to an ideal solution adds up with a current driven by a temperature- and concentration-dependent
potential. Accordingly, a general explicit formula for the thermodiffusion coefficient is obtained. Practical use
of the framework is illustrated on simple specific models of a colloid in a solvent. Large Soret coefficients of
both signs are calculated for realistic values of the physicochemical parameters, in qualitative agreement with
published experimental data.
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I. INTRODUCTION

Thermodiffusion~also called the Soret or Ludwig-Sore
effect! is a phenomenon where a mass flow is induced b
gradient of temperature in a complex~at least binary! one-
phase system, generally a liquid. It was observed for the
time almost 150 years ago@1–5#. To describe this effec
briefly, let us consider a single-phase material made of
or more components, such as a colloidal system where gr
or nanoparticles are dispersed in a carrier fluid, character
by a volume fractionf of one of the components. If thi
initially homogeneous material is submitted to a thermal g
dient, a concentration current is sometimes observed w
is parallel to the thermal gradient: this is the Soret effect. I
characterized by the so-called Soret coefficientST , such that
@6# DmST is the opposite of the ratio of the volume-fractio
current density to the temperature gradient (Dm is the mass
diffusion coefficient!. The alternative definitionST* 5ST /f is
also encountered. The effect is also observed in gases a
solids@4,7#. After studies on the thermodiffusion of dissolve
polymers, the Soret effect has been recently studied in
loids @8–11# and this paper will mainly focus on the Sor
effect in these asymmetric binary systems where nano
ticles are dispersed in a carrier liquid. After a first use
conventional hydrodynamic techniques with a thermodif
sion flow cell @12,13#, optical methods such as small-ang
Rayleigh scattering@14,15#, beam deflection@16,17#, and
forced Rayleigh scattering@18–22# have proved to be inter
esting tools for studying thermodiffusion in binary liquids.
gases and ordinary liquids, we have 1025,ST* ,1023 K21

~Ref. @23#!, in liquid metalsST* '1023 K21 ~Ref. @24#! and
in polymeric solutionsST* '0.5 K21 ~Ref. @20#!.

Recently, values ofST* from 20.25 to 10.17 K21 have
been reported in magnetic colloidal systems, or ferroflu
@25,26#. They are colloidal suspensions of magnetic iro
oxide nanoparticles dispersed in a carrier liquid@27,28#.
They can be divided into two main groups, ionic or su
facted, depending on the interparticle repulsion used to av
aggregation. In the case of an electrostatic repulsion~ionic
1063-651X/2003/67~1!/011404~6!/$20.00 67 0114
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ferrofluid @29#!, the particle surface is charged with H1 or
OH2 ions, or with ionic ligands, whereas in the case of
steric interaction the nanoparticle is coated with surfact
molecules~surfacted ferrofluid!. In addition to the magnitude
of thermodiffusion in these materials, another interesting
fect is that both signs are found for the Soret coefficient
varying the type of ferrofluid~ionic or surfacted!, the sol-
vent, or the nature of the coating material, while they ke
the same magnetic core. For instance, the samples in R
@26# and @30# have the following constitutions.~i! In the
ionic samples, maghemite-core (Fe3O4) nanoparticles are
dispersed in water; they are either citrated, with a nega
surface charge, or acidic, with a positive surface cha
(V207Cit andV207NO3, respectively!. ~ii ! In the surfacted
samples, the nanoparticles have the same maghemite
as ionic samples, but they are coated w
beycostatne®-surfactant molecules and dispersed
cyclohexane.

Although the Soret effect was discovered more than o
century ago, a physical understanding of it is not fu
achieved. The purpose of this paper is to develop a sim
framework allowing to envision the Soret effect in colloid
on the microscopic scale. We shall start from the express
of the current density of colloidal particles in the presence
a nonuniform temperature. Generally speaking, if a medi
is not homogeneous, the expression of the particle-cur
densityj ~in s21 m22! as a functional of the particle densityn
~in m23! cannot@31# be obtained by uncritically plugging a
position dependence into a ready-made homogeneous
pression. Most frequently, the ready-made expression ofj is
either phenomenological~e.g., Fick’s diffusion law supple-
mented with a drift term! or ~if it is theoretical! such that it
tends to minimize the free energy of the system. Suc
thermodynamic rule is not applicable in the case of a n
uniform temperature, and a new structure for the curren
expected. This state of affairs is encountered in the ther
electric effect where an electric conductor is subjected t
temperature gradient, and an extra current proportiona
grad T flows in addition to the familiar drift and diffusion
currents. A kinetic-theoretical calculation of the current in
particular model for the conducting medium@32,33# shows
©2003 The American Physical Society04-1
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that the extra current cannot be obtained from extending
isothermal drift-diffusion formula forj . In view of this, a
reliable treatment of the analogous Soret problem canno
expected to have general validity unless it is borne ou
kinetic theory. The fact that a particular mechanism recen
succeeded in accounting for a Soret effect in micellar so
tions @34# does not ensure its general validity. This is w
Sec. II recalls the kinetic theory of Brownian motion an
derives an expression forj in a variable-temperature me
dium. The case of free colloidal particles is treated in S
II A, and the formula for the thermodiffusion coefficient i
the general case is given in Sec. II C. No specific mode
the colloid or the solvent is assumed so far. Section III illu
trates the framework on specific, simple examples show
that strong Soret effects of both signs can be obtained, w
the correct order of magnitude. The versatility of the fram
work is demonstrated, and conclusions are drawn in Sec

II. BROWNIAN MOTION IN NONUNIFORM
TEMPERATURE

A. Current equation for independent particles

A colloidal particle in a solution undergoes Brownian m
tion due to the many collisions with light surrounding mo
ecules. The kinetic theory was put forth by Smoluchow
and reviewed by Chandrasekhar@35# ~also see Balian@36#
for a detailed account!. The joint distributionf (r ,p,t) of the
position r and the momentump5Mv of the colloid obeys
the Kramers equation,

] f

]t
1v•

] f

]r
1F•

] f

]p
5g

]

]p
•S pf 1MkT

] f

]pD , ~1!

whereF(r ,t) is an applied force,M is the mass of the col
loidal particle,g is the frequency of collision with the sur
rounding medium, andT is the temperature of that medium
This is a linear Boltzmann equation describing the evolut
in phase space of a massive particle in an underlying pas
medium. The basic properties of Eq.~1! are well known, and
are briefly recalled now. First, the differential, instead of
tegral, nature of the scattering operator@right-hand side of
Eq. ~1!# reflects the fact that the colloid-medium collision
entail quasicontinuous changes ofp in the limit of infinitely
light solution particles. Second, the joint distribution

f ~r ,p,t !5n~r ,t !~2pMkT!23/2expS 2
p2

2MkTD ~2!

makes the right-hand side of Eq.~1! vanish, and the left-hand
side vanishes in the absence ofF if the densityn(r ,t) is
homogeneous and independent of time. This is the homo
neous equilibrium state, in which the medium impos
its temperature to the colloid. In the presence ofF
52grad U, ] f /]t50 if n(r ,t)}exp@2U(r )/kT#. This is
the sedimentation equilibrium in the presence of gravity.

In a nonequilibrium state,f cannot be given by Eq.~2!
where the equal probabilities ofp and2p entail a vanishing
current. However, it is physically clear thatf keeps very
close to equilibrium if the collision frequencyg is very large:
01140
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the medium tends to thermalize the particle. And it is ma
ematically clear from Eq.~1! that, if g→1`, f asymptoti-
cally approaches equilibrium solution~2!. The distributionf
can be obtained from an expansion in powers ofg21 which
has been carried out by van Kampen@37# in the case that
both the medium temperatureT(r ) and the collision fre-
quencyg(r ) are inhomogeneous. Fromf, the current density

j5E E E ~p/M ! f ~r ,p,t !d3p/h3 ~3!

~h is Planck’s constant! is calculated to be, to order 1/g,

j5m@F2grad~kT!#n2D grad n. ~4!

In Eq. ~4! m51/Mg has the meaning of a mobility~response
to a forceF!, and D5kT/Mg that of the diffusivity ~re-
sponse to an inhomogeneity in density!. The Nernst-Einstein
relationD5kTm naturally ensues from the expansion of t
kinetic equation~1!.

Equation~4! can be arrived at in a different way. When
ever the collisions of the particle with the environment a
weakly inelastic, an alternative Fokker-Planck formalis
@38# is applicable. In the case of an energy-independent s
tering timet51/g, and if the forceF derives from a poten-
tial energyU, an Onsager-type expression is obtained,

j5DnFgradS 2m̃

kT D1S U1
5

2
kTDgradS 1

kTD G , ~5!

whereD5kTt/M , and m̃5kT ln@nh3/2(2pMkT)3/2#1U is
the chemical potential of a perfect gas~or ideal solution! of
classical particles subjected to a potentialU. Elementary al-
gebra shows that Eqs.~4! and ~5! are equivalent to each
other.

There are other variants of Eq.~4!, each of which has its
physical content. For example, it may be rewritten as

j5m@Fn2grad~nkT!#, ~4’!

and one recognizes the local osmotic pressureP(r )
5kT(r )n(r ) of the solute. The quantity in square brackets
the force per unit volume entailing a flowj of solute. The
variety of settings of the current equation has been the so
of debates which have been reviewed elsewhere@31#. Corre-
spondingly, there is some ambiguity as to the definition
the Soret component of the current, and this is dealt with
Sec. II C.

B. Interacting particles

The linearity of the kinetic equation with respect tof ex-
presses the independence of the motions of two collo
particles. In practice, our solutions are not very dilute if t
volume fractionf54pnR3/3 reaches a few percent, an
inter-particle interactions are expected which it is desira
to account for. In order to keep within a one-particle fram
work, some kind of mean-field approach is necessary. M
can be learned from the Debye-Hu¨ckel-Onsager theory of ion
transport in semi-dilute solutions of electrolytes where
drift velocity of an ion is affected by the presence of near
4-2
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COLLOID TRANSPORT IN NONUNIFORM TEMPERATURE PHYSICAL REVIEW E67, 011404 ~2003!
ions of unlike and like signs. The interaction is described
means of an interaction energy@39# ~sometimes termed ‘‘cor-
relation energy’’!

Uc5 1
2 qw8, ~6!

whereq is the ion’s charge andw8 is the electric potentia
due to the ionic atmosphere surrounding the ion. In the p
ence of an applied electric potentialV, the current density in
an isothermal solution,j5m@2grad(qV)#n2D grad n in
the dilute case, becomes

j5m@2grad~qV1Uc!#n2D grad n ~7!

in the semidilute range. Asgrad Uc5(]Uc /]n)grad n, Eq.
~7! can be rewritten as

j5m@2grad~qV!#n2De grad n, ~8!

whereDe is an effective diffusivity related to the bare diffu
sivity D by

De5D@11~n/kT!~]Uc /]n!#. ~9!

In Eq. ~7! the interaction changed the drift component of t
current, while in Eq.~8! the interaction modifies the diffu
sion component of the current through an effectiv
concentration-dependent diffusivityDe . That concept is
used in the physical chemistry of electrolytes@40# and col-
loids @41#, and it accounts for the fact thatDe /m departs
from the Nernst-Einstein valuekT.

Although we shall not need it in Sec. III, a word about t
mobility m is in order. In a homogeneous isothermal soluti
subjected to an external forceF52grad U, the current den-
sity j consists of a pure drift termmFn, and the drift velocity
is vd5mF. If the solution is characterized by a viscosityh,
and if the particle’s radiusR is much larger than the typica
molecular dimensions,m is given by the Stokes formula
namely,

m51/6phR. ~10!

If the particle carries an electric chargeQ, and if an electric
field E52grad V is applied to the solution, the drift veloc
ity is written vd5mEE, wheremE ~in m2 V21 s21! is termed
the electrophoretic mobility@42#. The latter quantity should
not be identified withQm. This comes about because th
electric field actsboth on the large particle and on the ion
cloud ~of charge2Q) screening the particle. The partic
and the cloud are respectively subjected to the forcesQE and
2QE. In the strong screening limit, the ionic cloud lies ve
near the particle, and then the viscosity of the fluid transm
part of the force2QE to the particle, entailing an electro
phoretic mobility weaker thanQm by a factor 3lD/2R!1
(lD is the screening length defined in Sec. III A!. In the
weak screening limit, the typical size of the ionic cloud ve
much exceedsR, and thenmE is identical withQm. In what
follows, the knowledge ofm is not necessary as it does n
appear in the expression of the Soret coefficient.
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C. Expression of the Soret mobility

We return to Eq.~4! where we take forU an internal
potential energy instead of an external one likeqV. The
internal U is due to the interaction of the colloid with it
surrounding, either the small ions copresent in the solution
the other colloidal particles. If not only the densityn, but
also the temperatureT is inhomogeneous,

grad U5~]U/]n!T grad n1~]U/]T!n grad T, ~11!

assuming no explicit position dependence inU. As a result,
the current density may be written on the pattern of R
@26#, namely,

j52mS~grad kT!n2De grad n, ~12a!

where the effective diffusivityDe defined according to Eq
~9! should be identified withDm introduced in Sec. I, and

mS5m$11@]U/]~kT!#n% ~12b!

is the so-called Soret mobility. In Ref.@26# mS is compared
to me[De /kT, and the ratiomS /me is accessed experimen
tally; it is related to the Soret coefficientST* by mS /me

5TST* . From Eqs.~9! and ~12b!, the theoretical expressio
for the mobility ratio is

mS /me5
11@]U/]~kT!#n

11~n/kT!~]U/]n!T
. ~13!

In the absence of a potential energy,mS5m and ST*
51/T are positive: the colloids are dragged towards low
temperatures. It is sometimes said that the particles accu
late in regions of smaller agitation. In the presence o
temperature-dependentU, the tendency to go to lower tem
peratures may be strengthened or reversed by the interac
Thus, mS /me or ST* brings information on the interaction
undergone by the colloid. Section III studies toy-model e
amples showing~i! how to use the theoretical machinery, an
~ii ! that strong Soret mobilities of both signs are possible

III. ILLUSTRATION OF THE FRAMEWORK

A. Sensitivity to temperature

Consider that the colloids are spherical objects of radiuR
and of chargeQ5Ne in a solution containing a number den
sity c of monovalent ions~of charge6e). The number den-
sity n of the colloidal particles is taken to be so small th
they do not interact with each other. The Debye-Hu¨ckel
theory of electrolytes gives the following value for the ele
tric potential created by the ionic cloud at the surface ofQ,

w852Q/4p«~R1lD!, ~14!

where

lD5~«kT/2ce2!1/2 ~15!

is the screening length, and« denotes the dielectric permit
tivity of the solvent.~We use SI units throughout.! In Eq. ~6!,
where the ion’s potential energyU is 1

2 Qw852Q2/8p«(R
4-3
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E. BRINGUIER AND A. BOURDON PHYSICAL REVIEW E67, 011404 ~2003!
1lD), the ion’s self-energyQ2/8p«R has been removed
While this is justified for a point charge such as Cl2 or Na1,
it is inappropriate in the case of a complex object who
charge and even radius may depend on the state of the
ronment. Indeed, it isnot the interaction energy12 Qw8, but
the total energyU5 1

2 Qw, where w5Q/4p«R1w8 is the
total electric potential, that accounts for the solubility
polyions@39#. Likewise, in a nonuniform temperature, if th
chargeQ depends onT owing to a chemical equilibrium
between the colloid surface and the solution, the self-ene
also varies withT. For definiteness, suppose thatQ5Q0@1
2exp(2E/kT)#, that is to say,Q decreases with increasin
temperature according to a thermally activated desorp
mechanism. Then the total energy

U5Q2lD/8p«R~R1lD! ~16!

depends on temperature throughQ and lD ~neglecting the
temperature dependence of the permittivity!:

]U

]~kT!
522

E

kT

exp~2E/kT!

12exp~2E/kT!

U

kT
1

R

2~R1lD!

U

kT
.

~17!

The first term in]U/](kT), due to (]U/]Q)lD
, is negative,

while the second one, due to (]U/]lD)Q , is positive. In
water at 300 K, if lD530 nm ~ionic strength
1024 mol L21), R57 nm and N5100, U/kT5417, and
mS /m'2780 asE/kT!1. For E54kT, mS /m'240. Fi-
nally, for E@kT ~Q does not vary withT!, mS /m'140.
From this toy model, it is clear that strong Soret mobilities
both signs are possible in colloidal systems. In Ref.@26# the
experimental values ofmS /me found in ionic ferrofluids are
222 (V207NO3), 255 (V207Cit), and2137 (S184). Re-
cent measurements show that positive Soret coefficient
ionic ferrofluids are possible, too@30#. Since Sec. III B will
show thatmS /me is usually of the order ofmS /m, the simple
mechanism studied here is a plausible candidate. There
need to invoke@43# a thermal conductivity mismatch be
tween particle and solvent combined with a dielectrophor
force which was experimentally shown to be negligible@26#.
It should be noted thatU is proportional to the square of th
colloid charge, meaning that the knowledge of polydispers
is mandatory for quantitative interpretation of the thermod
fusion data, and this is contemplated for future work.

B. Sensitivity to density

The interaction energy discussed above takes into acc
the interaction between the colloid and the solvent. It d
not depend on the colloid density, as the colloid-colloid
teraction is dismissed. Such an assumption is too restric
at the volume fractions usually considered in most exp
ments, and we show what happens when van der W
forces between two colloidal particles are accounted for.

The binary interaction energy, in the large-distancer
@R) limit, is

u12~r !5216AR6/9r 6, ~18!
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whereA.0 is Hamaker’s constant@42#. The collective in-
teraction energy between a colloid labeled 1~located atr
50) and colloids labeled 2 is approximately given by

U1'E
2R

1`

u12~r !n4pr 2dr ~19!

if the conditional density of colloids 2 in the presence
colloid 1 is equal ton for all r .2R. @In actual fact, short-
distance repulsion usually lowers the conditional dens
nearr 52R, but there the trueu12(r ) is larger than given by
Eq. ~18!.# One obtains

U1528pAR3n/27. ~20!

From Eq.~9b!, it is clear that]U1 /]n,0 yields a negative
contribution toD. Such antidiffusion expresses the tenden
to coagulation, and the relative correction to the diffusivity
2(2/9)(Af/kT). Taking a typical valueA55•10220 J in
water @42# and R57 nm, the measured value of diffusivity
based on interpreting the forced Rayleigh scattering data
the basis of Eq.~12a!, differs from the valueD at infinite
dilution by a relative correction (De2D)/D'22.5f.

Similarly, the short-distance repulsion caused by the ov
lap of the ionic clouds entails apositivecontribution to the
diffusivity. In the limit R@lD , the Derjaguin-Landau-
Verwey-Overbeek theory gives@42#

u128 ~r !5~N2,kT/8R!ln$11exp@2~r 22R!/lD#%.
~21!

where,5e2/4p«kT is the Bjerrum length. CalculatingU18
according to Eq.~19!, letting u5(r 22R)/lD , and neglect-
ing ulD in front of 2R in the integrand foru&1 yield

U1852pnN2,kTRlDE
0

1`

ln~11e2u!du, ~22!

or, equivalently,

U18/kT5~p2/8!fN2,lD /R2. ~23!

In water at 300 K, and forN5100, f51%, R57 nm, and
lD50.7 nm, the diffusivity correction is1120%. Equation
~23! is quantitatively valid insofar asU18/kT,1; more pre-
cisely, the total (attractive1repulsive) function u12(r )
1u128 (r ) should not exceedkT. Otherwise the conditiona
density is significantly reduced by the potential barrier n
r 52R, and the integrand of Eq.~19! has to be multiplied by
exp„2@u12(r )1u128 (r )#/kT….

A final remark is in order. If the Hamaker constant d
pends on temperature,]U1 /](kT)}]A/]T contributes to
mS /m. In the Lifshitz theory@42#, A}T if the temperature
dependence of the dielectric permittivities is neglected,
that the contribution isU1 /kT522Af/9kT'22.5f. At
f51%, this is very small compared to the contribution e
amined in Sec. III A. The reason is thatU1 is small in ther-
mal ~kT! units and does not exhibit a pronounced sensitiv
to temperature, while the electrostatic interaction energie
Sec. III A are large in thermal units. The repulsive contrib
4-4
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tion U18 is 1.2kT in the example considered above, and t
relative contribution to the Soret mobility is]U18/](kT)
510.6.

IV. CONCLUSION

In this paper, we have devised a general framework aim
at accounting for the thermodiffusion of colloids. Unlike pr
vious workers, we have not relied on extensions of rea
made isothermal expressions of the current density. Star
from the kinetic theory of Brownian motion in nonuniform
temperature, we obtained~i! the nanoparticle-current equa
tion used in interpreting the experimental data, and~ii ! the-
oretical formulas for the diffusion and thermodiffusion coe
s

-

lid
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ficients. Our derivation takes into account the colloid-solve
and colloid-colloid interactions through the potential ener
of one colloidal particle. That energy depends on the kind
solution considered~aqueous or nonpolar solvent, ionic o
surfacted colloid!, and is calculable from the physicochem
cal data. The framework is not restricted to very dilute so
tions. As such, it can be of broad interest beyond the part
lar area where it was devised. Finally, preliminary toy-mod
calculations performed in that framework prove that lar
Soret coefficients of both signs can be obtained, in qual
tive agreement with published experimental data. Furt
data are being obtained@30#, and we plan to interpret them
within this framework.
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